1,811 research outputs found

    Adaptive Regularization for Nonconvex Optimization Using Inexact Function Values and Randomly Perturbed Derivatives

    Get PDF
    A regularization algorithm allowing random noise in derivatives and inexact function values is proposed for computing approximate local critical points of any order for smooth unconstrained optimization problems. For an objective function with Lipschitz continuous pp-th derivative and given an arbitrary optimality order qpq \leq p, it is shown that this algorithm will, in expectation, compute such a point in at most O((minj{1,,q}ϵj)p+1pq+1)O\left(\left(\min_{j\in\{1,\ldots,q\}}\epsilon_j\right)^{-\frac{p+1}{p-q+1}}\right) inexact evaluations of ff and its derivatives whenever q{1,2}q\in\{1,2\}, where ϵj\epsilon_j is the tolerance for jjth order accuracy. This bound becomes at most O((minj{1,,q}ϵj)q(p+1)p)O\left(\left(\min_{j\in\{1,\ldots,q\}}\epsilon_j\right)^{-\frac{q(p+1)}{p}}\right) inexact evaluations if q>2q>2 and all derivatives are Lipschitz continuous. Moreover these bounds are sharp in the order of the accuracy tolerances. An extension to convexly constrained problems is also outlined.Comment: 22 page

    Adaptive Regularization Algorithms with Inexact Evaluations for Nonconvex Optimization

    Get PDF
    A regularization algorithm using inexact function values and inexact derivatives is proposed and its evaluation complexity analyzed. This algorithm is applicable to unconstrained problems and to problems with inexpensive constraints (that is constraints whose evaluation and enforcement has negligible cost) under the assumption that the derivative of highest degree is β\beta-H\"{o}lder continuous. It features a very flexible adaptive mechanism for determining the inexactness which is allowed, at each iteration, when computing objective function values and derivatives. The complexity analysis covers arbitrary optimality order and arbitrary degree of available approximate derivatives. It extends results of Cartis, Gould and Toint (2018) on the evaluation complexity to the inexact case: if a qqth order minimizer is sought using approximations to the first pp derivatives, it is proved that a suitable approximate minimizer within ϵ\epsilon is computed by the proposed algorithm in at most O(ϵp+βpq+β)O(\epsilon^{-\frac{p+\beta}{p-q+\beta}}) iterations and at most O(log(ϵ)ϵp+βpq+β)O(|\log(\epsilon)|\epsilon^{-\frac{p+\beta}{p-q+\beta}}) approximate evaluations. An algorithmic variant, although more rigid in practice, can be proved to find such an approximate minimizer in O(log(ϵ)+ϵp+βpq+β)O(|\log(\epsilon)|+\epsilon^{-\frac{p+\beta}{p-q+\beta}}) evaluations.While the proposed framework remains so far conceptual for high degrees and orders, it is shown to yield simple and computationally realistic inexact methods when specialized to the unconstrained and bound-constrained first- and second-order cases. The deterministic complexity results are finally extended to the stochastic context, yielding adaptive sample-size rules for subsampling methods typical of machine learning.Comment: 32 page

    Updating constraint preconditioners for KKT systems in quadratic programming via low-rank corrections

    Get PDF
    This work focuses on the iterative solution of sequences of KKT linear systems arising in interior point methods applied to large convex quadratic programming problems. This task is the computational core of the interior point procedure and an efficient preconditioning strategy is crucial for the efficiency of the overall method. Constraint preconditioners are very effective in this context; nevertheless, their computation may be very expensive for large-scale problems, and resorting to approximations of them may be convenient. Here we propose a procedure for building inexact constraint preconditioners by updating a "seed" constraint preconditioner computed for a KKT matrix at a previous interior point iteration. These updates are obtained through low-rank corrections of the Schur complement of the (1,1) block of the seed preconditioner. The updated preconditioners are analyzed both theoretically and computationally. The results obtained show that our updating procedure, coupled with an adaptive strategy for determining whether to reinitialize or update the preconditioner, can enhance the performance of interior point methods on large problems.Comment: 22 page

    Association between diverticulosis and colonic neoplastic lesions in individuals with a positive faecal immunochemical test

    Get PDF
    Background The association between diverticulosis and colonic neoplastic lesions has been suggested, but data in literature are conflicting. This study aimed to investigate such a relationship in patients participating in a colorectal cancer screening program who underwent high-quality colonoscopy.Methods Data from consecutive individuals 50-75 years of age with a positive faecal immunological test were considered. Diverticulosis was categorised as present or absent. The prevalence of neoplastic lesions (adenoma, advanced adenoma, and cancer) between individuals with and those without diverticula was compared. A multivariate analysis was performed.Results Overall, data from 970 consecutive individuals were evaluated, and diverticulosis was detected in 354 (36.5%) cases. At least one adenoma was detected in 490 (50.5%) people, at least one advanced adenoma in 264 (27.2%), multiple adenoma in 71 (7.3%), whilst a cancer was diagnosed in 48 (4.9%) cases. At univariate analysis, the adenoma detection rate in patients with diverticula was significantly higher than in controls (55.9% vs 47.4%; p=0.011). At multivariate analysis, presence of diverticulosis was an independent risk factor for both adenoma detection rate (OR=1.58; 95% CI=1.14-2.18; p=0.006) and advanced adenoma (OR=1.57; 95% CI=1.10-2.24; p=0.013), but not for colorectal cancer.Conclusions In a colorectal screening setting, the adenoma detection rate was significantly higher in individuals with diverticulosis than in controls

    A matrix-free preconditioner for sparse symmetric positive definite systems and least-squares problems

    Get PDF

    A Non-Local Mean Curvature Flow and its semi-implicit time-discrete approximation

    Full text link
    We address in this paper the study of a geometric evolution, corresponding to a curvature which is non-local and singular at the origin. The curvature represents the first variation of the energy recently proposed as a variant of the standard perimeter penalization for the denoising of nonsmooth curves. To deal with such degeneracies, we first give an abstract existence and uniqueness result for viscosity solutions of non-local degenerate Hamiltonians, satisfying suitable continuity assumption with respect to Kuratowsky convergence of the level sets. This abstract setting applies to an approximated flow. Then, by the method of minimizing movements, we also build an "exact" curvature flow, and we illustrate some examples, comparing the results with the standard mean curvature flow
    corecore